
Zagreb, FER

Debugging and bug detection tools
for C
Juraj Vijtiuk

January 12, 2021



About us

◦ Embedded Linux development and integration

◦ Delivering solutions based on Linux, OpenWrt and Yocto

• Focused on software in network edge and CPEs

◦ Continuous participation in Open Source projects

◦ www.sartura.hr

https://www.sartura.hr/


Debugging



◦ The process of fixing and finding the root cause of bugs

◦ Shouldn’t be confused with troubleshooting

◦ Troubleshooting - assumes a good design, and fixes issues with the use of the design

◦ Debugging - a superset of troubleshooting, includes fixes to the design

◦ This presentation will focus on UNIX based system, with an emphasis on Linux



The debugging process

◦ The process of debugging should be approached systematically, using a top down approach,
with some of the following steps.

◦ Get to know the system - read the manuals, source code, examples, previous issues and bug
reports

◦ Make the bug reproducible, document and automate the steps

• Nondeterministic bugs are problematic



The debugging process cont.

◦ Collection of information about the problem

• What triggers the bug (e.g. does the bug still appear after manual changes to the input)

• What environments does the bug appear in

• When was the bug introduced

• Track program state surrounding the bug



The debugging process

◦ Divide and conquer while searching for the cause

• Binary search

• Use easy to recognise input data patterns

• Start from the source of the crash/bug and move bottom up



The debugging process

◦ Check assumptions about the system

• Check that the tools actually work

◦ Confirm that the bug really is fixed, and can’t be triggered with similar conditions

• Keeping track of surrounding state helps here



Debugging tools



Diagnostic tools

◦ Tools used to collect information about the target at a higher level:

• strace - used to view system calls to the kernel

• ltrace - intercepts dynamic library calls

• dstat - unifies iostat, vmstat and ifstat

• lsof - show a list of open file descriptors



Diagnostic tools

◦ Tools used to collect information about the target at a higher level:

• Network tools
• Packet capture tools (tcpdump and Wireshark)
• netcat, ngrep, netstat/ss, socat

• eBPF tools, BCC

• perf, flame graphs

◦ Additional resources at http://www.brendangregg.com/



Debuggers

◦ gdb, lldb, GUI frontends

◦ The most common way to use a debugger is by stepping and using breakpoints

◦ Works with assembly instructions, CPU and memory state

◦ Debug symbols enabled, optimizations disabled!

◦ Remote debugging, useful for embedded development

◦ command line interface and TUI



Debuggers

◦ Some advanced features are also useful:

• Automatic expression display, .gdbinit

• Watchpoints, catchpoints, temporary breakpoints and hardware breakpoints

• Conditional breakpoints

• Tracepoints

• Altering program execution

• GDB scripting



Timeless Debuggers

◦ Classic debuggers - ineffective for time sensitive and nondeterministic programs and bugs

◦ Timeless debuggers can record program execution and then replay it

◦ Enables reverse stepping, and following execution backwards



Timeless Debuggers

◦ As gdb has only basic support, other popular tools exist:

• rr - developed at Mozilla, uses gdb as a backend

• PANDA, QIRA, radare2 - various frameworks, primarily aimed at reverse engineering and
binary analysis

◦ rr is the most suitable for developer needs



Memory debugging

◦ Currently two memory debugging tool suites are popular for C/C++ programs

• Valgrind - runtime debugging using a VM and dynamic recompilation, requires no target
program modification

• The sanitizers project- ASAN, MSAN, UBSAN, TSAN, which are added at build time



Valgrind

◦ Valgrind is actually a collection of tools:

• memchek - a memory error detector

• cachegrind - cache and branch prediction profiler

• callgrind - call-graph based cache and branch prediction profiler

• Helgrind and DRD - thread error detectors

• Massif and DHAT - heap profilers and analyzers

◦ Valgrind papers are available at https://www.valgrind.org/docs/pubs.html



Sanitizers
◦ Similar to valgrind, uses instrumentation and shadow state

◦ Has to be compiled and linked

◦ Also a collection of tools:

• ASAN - memory error detection: leaks, UAFs, buffer overflows

• MSAN - detects the use of uninitialized memory

• TSAN - detects data races

• UBSAN - detects undefined behaviour

◦ Corresponding variants in the Linux kernel



Proactive bug detection



Proactive bug detection tools
◦ Complex software will probably never be completely bug free

• Halting problem

◦ Tools and methods can help detect bugs early:

• Testing and Continuous Integration

• Non default compiler flags and warnings

• Detailed debug logging
• Can be toggled at build time, run time or during program execution

• Fuzzing

• Static analysis



Fuzzing

◦ Automated software testing by providing unexpected and random data to a program

◦ The program is watched for any unexpected behaviours:

• Crashes

• Hangs

• Memory errors



Fuzzing

◦ Mostly used to find security bugs

◦ Useful for proactive bug finding

◦ Can be integrated into CI

◦ LLVM’s LibFuzzer most appropriate for developers

◦ Works even better with sanitizers



Kernel debugging



Kernel debugging

◦ Similar to userspace debugging

◦ Kernels are debugged by:

• Attaching to a running kernel in a VM

• Attaching to a running kernel via hardware (JTAG/serial ports)

• A special kernel configuration is needed

◦ System map, stack traces

◦ -O2 by default

◦ Kernel panics and oops



Kernel tools

◦ printk, dmesg, systemd tools

◦ kernel probes, tracepoints - similar to userspace breakpoints

◦ Ftrace - kernel function tracer

◦ kgdb, kdb, gdb

◦ eBPF again

◦ KASAN, KMSAN, KCSAN - kernel sanitizers

◦ syzkaller - kernel system call fuzzer



Additional resources

◦ https://jvns.ca/blog/2017/07/05/linux-tracing-systems/

◦ http://www.brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html

◦ https://llvm.org/docs/LibFuzzer.html

◦ https://www.youtube.com/watch?v=PorfLSr3DDI



Debugging and bug detection tools
for C
juraj.vijtiuk@sartura.hr

Feedback form: https://forms.gle/YncUDrUJZ89JD1TZA

info@sartura.hr · www.sartura.hr


	Debugging
	Debugging tools
	Bug prevention
	Kernel debugging

