
Bug detection in embedded
environments by fuzzing and
symbolic execution
Juraj Vijtiuk · Luka Perkov · Antonio Krog

October 1, 2020



About us

◦ Embedded Linux development and integration

◦ Delivering solutions based on Linux, OpenWrt and Yocto

• Focused on software in network edge and CPEs

◦ Continuous participation in Open Source projects

◦ www.sartura.hr

https://www.sartura.hr/


Introduction



Introduction

◦ OpenWrt - GNU/Linux distribution aimed at network embedded devices

◦ RIOT OS - Open Source real-time multithreaded OS for IoT

◦ Fuzzing - software testing process, uses random inputs and tracks unusual behavior

◦ Symbolic execution - executes a program with symbolic instead of concrete values



Motivation

◦ Current state of embedded and IoT security

◦ Existing work mostly focused on proprietary software

◦ We previously used both RIOT and OpenWrt

◦ Compare with other Open Source software and general IoT/embedded security



Methods used



Fuzzing

◦ Black-box and gray-box based fuzzing

◦ Mutational and generative input generation

◦ Can sometimes get ”stuck” on very specific value checks

◦ E.g. if (var == 0xdeadbeef)

◦ Often used with ASAN/UBSAN/MSAN



Symbolic execution

◦ Executes the programwith symbolic instead of concrete values, which allows path constraints
to be solved easily

◦ Often used alongside classic fuzzing

◦ Disadvantages

• Harder to set up and use

• State explosion

• Interaction with the program environment



Testing setup



Tools used

◦ Fuzzers

• black-box - Radamsa

• gray-box - AFL, AFLPlusPlus, LibFuzzer, honggfuzz, Angora

• generational - dharma, gramfuzz

◦ Symbolic Execution

• KLEE



Targets

◦ Openwrt

• UCI

• Ubus

• libubox

◦ libjson-c

◦ RIOT-OS



Results



UCI

◦ AFL

◦ Existing OpenWrt UCI files used as starting corpus

• Trial one : three hours, 5 crashes, one bug

• Trial two : one hour, 3 crashes, one bug

• Trial three : 12 hours, no crashes

• Trial four : 12 hours, gramfuzz and dharma starting inputs, no crashes

◦ Radamsa - no crashes



libubox
◦ OpenWrt community started fuzzing libubox around the same time

◦ Several surface bugs were found and fixed

◦ LibFuzzer

• Trial one : 12 hours, 0 crashes

• Trial two : 12 hours, 0 crashes

• Trial three, ASAN + UBSAN: 12 hours, 0 crashes

• Trial four, MSAN : 12 hours, 1 crash

◦ KLEE immediately found the issue

◦ Some time later, CVE-2020-7248 was found and fixed by Petr Štetiar and Jo-Philipp Wich.



libjson-c

◦ Fuzzed as part of OSS-Fuzz

◦ Fuzzed for around 3 days with various fuzzers and KLEE, no crashes

◦ Continued fuzzing after paper submission

• In total around two weeks spent on fuzzing, with no crashes found



RIOT
◦ Previous existing work fuzzed COAP and the TCP stack

• Multiple bugs were found and fixed

◦ We started with a custom application that uses the default GNRC network functionality

◦ Encountered various issues

◦ Motivated by OpenWrt results, we switched to fuzzing smaller functions with LibFuzzer

◦ No crashes were found

◦ Simultaneously, another contributor opened a PR for GNRC AFL fuzzing

◦ Multiple crashes were found and fixed



Conclusion



Conclusion

◦ Projects would benefit from simple, elementary fuzz testing

◦ Surface bugs can be discovered within hours with little effort

◦ Sanitizers shouldn’t be ignored

◦ Symbolic execution is hard to set up

• However, elementary testing can reveal surface bugs quicker than fuzzing



Bug detection in embedded
environments by fuzzing and
symbolic execution
juraj.vijtiuk@sartura.hr


	Introduction

