
Zagreb, OSZUR, FER

Debugging and bug detection tools
for C
Juraj Vijtiuk

June 4, 2020



About us

◦ Embedded Linux development and integration

◦ Delivering solutions based on Linux, OpenWrt and Yocto

• Focused on software in network edge and CPEs

◦ Continuous participation in Open Source projects

◦ www.sartura.hr

https://www.sartura.hr/


Debugging



◦ The process of fixing and finding the root cause of bugs

◦ Shouldn’t be confused with troubleshooting

◦ Troubleshooting - assumes a good design, and fixess issues with the use of the design

◦ Debugging - a superset of troubleshooting, includes fixes to the design

◦ This presentation will focus on UNIX based system, with an emphasis on Linux



The debugging process
◦ The process of debugging should be approached systematically, using a top down approach,
with some of the following steps:

• Get to know the system - read the manuals, source code, examples, previous issues and
bug reports

• Make the bug reproducible, document and automate the steps
• Nondeterministic bugs are problematic

• Collection of information about the problem
• What triggers the bug (e.g. does the bug still appear after manual changes to the
input)

• What environments does the bug appear in
• When was the bug introduced
• Track program state surrounding the bug



The debugging process cont.
◦ The process of debugging should be approached systematically, using a top down approach,
with some of the following steps:

• Divide and conquer while searching for the cause
• Binary search
• Use easy to recognise input data patterns
• Start from the source of the crash/bug and move bottom up

• Check assumptions about the system
• Check that the tools actually work

• Confirm that the bug really is fixed, and can’t be triggered with similar conditions
• Keeping track of surrounding state helps here



Debugging tools



Diagnostic tools

◦ Tools used to collect information about the target at a higher level:

• strace - used to view system calls to the kernel

• ltrace - intercepts dynamic library calls

• dstat - unifies iostat, vmstat and ifstat

• lsof - show a list of open file descriptors



Diagnostic tools

◦ Tools used to collect information about the target at a higher level:

• Network tools
• Packet capture tools (tcpdump and Wireshark)
• netcat, ngrep, netstat/ss, socat

• eBPF tools, BCC

• perf, flame graphs

◦ Additional resources at http://www.brendangregg.com/



Debuggers

◦ gdb, lldb and various GUI frontends for both

◦ The most common way to use a debugger is by stepping and using breakpoints

◦ However, gdb can also be used to work with assembly instructions, CPU and memory state

◦ Debug symbols should be available, and optimization disabled!

◦ Most debuggers support remote debugging, which is useful for embedded development

◦ Two variations of UI for the command line are available



Debuggers

◦ Some advanced features are also useful:

• Automatic expression display

• Watchpoints and hardware breakpoints

• Conditional breakpoints

• Tracepoints

• Altering program execution

• GDB scripting



Timeless Debuggers
◦ Classic debuggers are ineffective when debugging time sensitive and nondeterministic pro-
grams and bugs

◦ Timeless debuggers can record program execution and then replay it

◦ Another benefit is the ability to reverse step, and follow the program’s execution backwards

◦ As gdb has only basic support, other popular tools exist:

• rr - developed at Mozilla

• PANDA - a whole framework for dynamic binary analysis, which also includes record/re-
play

• QIRA - also aimed at reverse engineering



Memory debugging

◦ Currently two memory debugging tool suites are popular for C/C++ programs

• Valgrind - runtime debugging using a VM and dynamic recompilation, requires no target
program modification

• The sanitizers project- ASAN, MSAN, UBSAN, TSAN, which are added at build time



Valgrind

◦ Valgrind is actually a collection of tools:

• memchek - a memory error detector

• cachegrind - cache and branch prediction profiler

• callgrind - call-graph based cache and branch prediction profiler

• Helgrind and DRD - thread error detectors

• Massif and DHAT - heap profilers and analyzers

◦ The idea was to build a DBI framework based on emulation with a VM and shadow values

◦ Valgrind papers are available at https://www.valgrind.org/docs/pubs.html



Sanitizers
◦ At a high level works similarly to valgrind, by adding instrumentation and using shadow state

◦ However sanitizers have to be added at compile and link time

◦ Also a collection of tools:

• ASAN - memory error detection: leaks, UAFs, buffer overflows

• MSAN - detects the use of uninitialized memory

• TSAN - detects data races

• UBSAN - detects undefined behaviour

◦ Some of these have corresponding variants in the Linux kernel



Proactive bug detection



Proactive bug detection tools
◦ Complex software will probably never be completely bug free

• Halting problem

◦ Tools and methods can help detect bugs early:

• Testing and Continuous Integration

• Non default compiler flags and warnings

• Detailed debug logging
• Can be toggled at build time, run time or during program execution

• Fuzzing

• Static analysis



Fuzzing
◦ Automated software testing by providing unexpected and random data to a program

◦ The program is watched for any unexpected behaviours:

• Crashes

• Hangs

• Memory errors

◦ Mostly used to find security bugs

◦ Useful for proactive bug finding

◦ Can be integrated into CI

◦ LLVM’s LibFuzzer most appropriate for developers

◦ Works even better with sanitizers



Kernel debugging



Kernel debugging

◦ Similar to userspace debugging

◦ Kernels are debugged by:

• Attaching to a running kernel in a VM

• Attaching to a running kernel via hardware (JTAG/serial ports)

• A special kernel configuration is needed



Kernel tools

◦ printk, dmesg, systemd tools

◦ kernel probes, tracepoints - similar to userspace breakpoints

◦ Ftrace - kernel function tracer

◦ kgdb, kdb, gdb

◦ eBPF again

◦ KASAN, KMSAN, KCSAN - kernel sanitizers

◦ syzkaller - kernel system call fuzzer



Additional resources

◦ https://jvns.ca/blog/2017/07/05/linux-tracing-systems/

◦ http://www.brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html

◦ https://llvm.org/docs/LibFuzzer.html

◦ https://www.youtube.com/watch?v=PorfLSr3DDI



Debugging and bug detection tools
for C
juraj.vijtiuk@sartura.hr

Feedback form: https://forms.gle/auaBjZgzcg4uoqsS9

info@sartura.hr · www.sartura.hr


	Debugging
	Debugging tools
	Bug prevention
	Kernel debugging

