
Zagreb, NKOSL, FER

Container technologies
Marko Golec · Juraj Vijtiuk · Jakov Petrina

April 11, 2020

About us

◦ Embedded Linux development and integration

◦ Delivering solutions based on Linux, OpenWrt and Yocto

• Focused on software in network edge and CPEs

◦ Continuous participation in Open Source projects

◦ www.sartura.hr

https://www.sartura.hr/

Introduction to GNU/Linux

◦ Linux = operating system kernel

◦ GNU/Linux distribution = kernel + userspace (Ubuntu, Arch Linux, Gentoo, Debian, OpenWrt,
Mint, …)

◦ Userspace = set of libraries + system software

Linux kernel

◦ Operating systems have two spaces of operation:

• Kernel space – protected memory space and full access to the device’s hardware

• Userspace – space in which all other application run
• Has limited access to hardware resources
• Accesses hardware resources via kernel
• Userspace applications invoke kernel services with system calls

User mode

User applications E.g. bash, LibreOffice, GIMP, Blender, Mozilla Firefox, etc.

Low-level system
components

System daemons:
systemd, runit, logind,
networkd, PulseAudio,
…

Windowing system:
X11, Wayland,
SurfaceFlinger
(Android)

Other libraries: GTK+, Qt, EFL, SDL, SFML,
FLTK, GNUstep, etc.

Graphics: Mesa, AMD
Catalyst, …

C standard library Up to 2000 subroutines depending on C library (glibc, musl, uClibc, bionic) (open() , exec() , sbrk() , socket() ,
fopen() , calloc() , …)

Kernel mode Linux Kernel

About 380 system calls (stat , splice , dup , read , open , ioctl , write , mmap , close , exit , etc.)

Process scheduling
subsystem IPC subsystem Memory management

subsystem Virtual files subsystem Network subsystem

Other components: ALSA, DRI, evdev, LVM, devicemapper, Linux Network Scheduler, Netfilter Linux SecurityModules:
SELinux, TOMOYO, AppArmor, Smack

Hardware (CPU, main memory, data storage devices, etc.)

TABLE 1 Layers within Linux

Virtualization

Virtualization Concepts
Two virtualization concepts:

◦ Hardware virtualization (full/para virtualization)

• Emulation of complete hardware (virtual machines - VMs)

• VirtualBox, QEMU, etc.

◦ Operating system level virtualization

• Utilizing kernel features for running more than one userspace instance

• Each instance is isolated from the rest of the system and other instances

• Method for running isolated processes is called a container

• Docker, LXC, Solaris Containers,Microsoft Containers, rkt, etc.

Virtual machines use hypervisors (virtual machine managers – VMM)

◦ Allowsmultiple guest operating systems (OS) to run on a single host system at the same time

◦ Responsible for resource allocation – each VM uses the real hardware of the host machine
but presents system components (e.g. CPU, memory, HDD, etc.) as their own

◦ Two types of hypervisors (VMMs)

• Type 1
• Native or bare-metal hypervisors running directly on host’s hardware and controlling
the resources for Vms (Microsoft Hyper-V, VMware ESXi, Citrix XenServer)

• Type 2
• Hosted hypervisors running within a formal operating system environment.
• Host OS acts as a layer between hypervisor and hardware.

◦ Containers do not use hypervisors

◦ Containers sometimes come with container managers

• Used for managing containers rather than resource allocation

◦ Containers use direct system calls to the kernel to perform actions

• Kernel is shared with the host

◦ Idea behind containers is to pack the applications with all their dependencies and run them in
an environment that is isolated from the host

◦ Two types of containers:

• Full OS containers – contain full root file system of the operating system
• Meant to run multiple applications at once
• Provide full userspace isolation
• LXC, systemd-nspawn, BSD jails, OpenVZ, Linux VServer, Solaris Zones

• Application containers – contain an application which is isolated from the rest of the
system (sandboxing)

• Application behaves at runtime like it is directly interfacing with the original operating
system and all the resources managed by it

• Docker, rkt

Parameter VMs Containers

Size Few GBs Few MBs

Structure Full contained environment Rely on underlying OS

Resources Contains full OS with no dependencies on the underlying OS
(e.g. Windows running on Linux and vice-versa) Rely on underlying OS

Boot time Few second overhead Millisecond overhead

TABLE 2 VMs vs containers - Differences

Virtualization Containers

Host	OS Host	OS

Hypervisor

Guest
OS

Guest
OS

Guest
OS

Libraries

Applications

Binaries

Container ContainerContainer

Applications rootfs

HardwareHardware

FIGURE 1 Virtualization vs Containers

Why use virtualization?

◦ Cost effective, resource savings

• Multiple machines can be virtualized on a single machine

◦ Management

• Everything can be managed from a single point, usually using a management software
for virtual machines and/or containers

◦ Maintenance

• Once deployed, machines can be easily switched for newmachines if needed in the future

Linux Features

Namespaces

◦ Lightweight process virtualization

◦ Namespaces = way of grouping items under the same designation

• Kernel feature which organizes resources for processes
• One process sees one set of resources
• Another process sees another set of resources
• One process cannot see other processes’ set of resources

• Each process has its own namespace – a set of resources uniquely allocated for that
process

• Namespaces allow processes to see the same parts of the system differently

Namespaces

◦ GNU/Linux kernel supports the following types of namespaces:

• network

• uts

• PID

• mount

• user

• time

Namespaces - PID
◦ PID namespaces kernel feature enables isolating PID namespaces, so that different names-
paces can have the same PID

◦ Kernel creates two namespaces - NS1 and NS2

◦ NS1 contains PID 1 and all other PIDs

◦ NS2 contains PID1 and all other PIDs

◦ NS1 can see PID 1 of NS2 but with some other PID (e.g. PID 10001) and all other PIDs of NS2

◦ NS2 can not see PIDs from NS1

◦ This way, isolation is achieved from these namespaces – processes inside NS2 are only func-
tional if NS2 is isolated from NS1

• In NS2 a process cannot send signal (e.g. kill) to a host machine

Namespace 1

PID 1
PID 100
PID n
...
PID 1230
(this is init from the container)
PID 1231
(this is another PID from container)
...

Namespace 2

PID 1
PID 2
PID n

...

FIGURE 2 Namespaces - PID

Namespaces — Linux configuration

◦ Namespace feature requires build-time kernel
configuration

◦ Example configuration from a system with Docker
and LXC

1 ...
2 CONFIG_NAMESPACES=y
3 CONFIG_UTS_NS=y
4 CONFIG_IPC_NS=y
5 CONFIG_USER_NS=y
6 CONFIG_PID_NS=y
7 CONFIG_NET_NS=y
8 ...

CGroups

◦ PID namespace allows processes to be grouped together in isolated environments

◦ Group of processes (or a single process) needs access to certain hardware components

• E.g. RAM, CPU, …

◦ Kernel provides the control groups (CGroups) feature for limiting how process groups access
and use these resources

CGroups

◦ 4 main purposes

• Limiting resources = groups can be set to not exceed a pre-configured memory limit (i.e.
this group of processes can access X MB of RAM)

• Prioritization = some groups may get a larger share of CPU utilization (i.e. this group of
processes can utilize 43% if CPU 1, while another group only 5%)

• Accounting = measures a group’s resource usage (i.e. this group of processes has been
using 5% of CPU)

• Useful for statistics

• Control = used for freezing, snapshoting/checkpointing and restarting

CGroups — Linux configuration

◦ CGroups feature requires build-time kernel
configuration

◦ Example configuration from a system with Docker
and LXC

1 ...
2 CONFIG_CGROUPS=y
3 CONFIG_BLK_CGROUP=y
4 CONFIG_CGROUP_WRITEBACK=y
5 CONFIG_CGROUP_SCHED=y
6 CONFIG_CGROUP_PIDS=y
7 CONFIG_CGROUP_RDMA=y
8 CONFIG_CGROUP_FREEZER=y
9 CONFIG_CGROUP_HUGETLB=y

10 CONFIG_CGROUP_DEVICE=y
11 CONFIG_CGROUP_CPUACCT=y
12 CONFIG_CGROUP_PERF=y
13 CONFIG_CGROUP_BPF=y
14 # CONFIG_CGROUP_DEBUG is not set
15 CONFIG_SOCK_CGROUP_DATA=y
16 CONFIG_BLK_CGROUP_RWSTAT=y
17 CONFIG_NET_CLS_CGROUP=y
18 ...

Linux Containers (LXC)

◦ LXC is a userspace interface for the GNU/Linux kernel containment features

• Allows operating system level virtualization on GNU/Linux systems

◦ In-between chroot and complete VM

• Sometimes referred to as chroot-on-steroids

◦ Does not depend on hardware support for virtualization

• Ideal for containerization/virtualization on embedded devices

◦ Configurable as a full feature file system (rootfs) or minimized for running single applications

◦ Relies heavily on kernel features

Container security

◦ LXC uses the following Linux features to improve security:

• Namespaces
• ipc, uts, mount, pid, network and user
• user namespaces, privileged and unprivileged containers

• Apparmor and SELinux profiles

• Seccomp policies

• Kernel capabilities

• CGroups

• Chroots (using pivot_root)

Working with LXC

◦ Each container needs its own configuration file

◦ Each container needs its own root file system

• The root file system contains all the necessary libraries, applications and environment
settings

• Needs to be manually prepared or downloaded from remote online repositories

◦ Place the configuration file and root file system in the same location

• /var/lib/lxc/<container_name>/

Configuring the container
◦ /etc/lxc/default.conf , $HOME/.config/lxc/default.conf or container specific in con-
tainer directory

◦ Container configuration defines the following components:

• Capabilities – what the container is allowed to do from an administrative perspective

• Cgroups – which resources of the host are allowed for the container (e.g. configuring
which devices can the container use)

• Mount namespaces – which of the host folders/virtual file systems will be allowed for
mounting inside the container (virtual file systems such as proc or sys)

• Network namespaces – which devices will be created inside the container and how they
connect to the outside network

◦ First part of the file handles capabilities

◦ A list of all the capabilites dropped (not
allowed) for the container

◦ Usually best to consult with man pages
http://man7.org/linux/man-
pages/man7/capabilities.7.html

1 lxc.cap.drop = mac_admin
2 lxc.cap.drop = mac_override
3 lxc.cap.drop = sys_admin
4 lxc.cap.drop = sys_boot
5 lxc.cap.drop = sys_module
6 lxc.cap.drop = sys_nice
7 lxc.cap.drop = sys_pacct
8 lxc.cap.drop = sys_ptrace
9 lxc.cap.drop = sys_rawio
10 lxc.cap.drop = sys_resource
11 lxc.cap.drop = sys_time
12 lxc.cap.drop = sys_tty_config
13 lxc.cap.drop = syslog
14 lxc.cap.drop = wake_alarm

http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html

◦ The second part is CGroup – what is
allowed for this container (as mentioned
before, a container can be seen as a set of
processes grouped together, meaning this
shows what these processes can access)

◦ It uses traditional Linux designations for
devices (try running ls -l /dev which
will list all the devices with corresponding
major:minor numbers)

◦ E.g. bold entry is for console on PC

1 lxc.cgroup.devices.deny = a
2 lxc.cgroup.devices.allow = c 1:1 rwm
3 lxc.cgroup.devices.allow = c 1:3 rwm
4 lxc.cgroup.devices.allow = c 1:5 rwm
5 lxc.cgroup.devices.allow = c 5:1 rwm
6 lxc.cgroup.devices.allow = c 5:0 rwm
7 lxc.cgroup.devices.allow = c 4:0 rwm
8 lxc.cgroup.devices.allow = c 4:1 rwm
9 lxc.cgroup.devices.allow = c 1:9 rwm

10 lxc.cgroup.devices.allow = c 1:8 rwm
11 lxc.cgroup.devices.allow = c 1:11 rwm
12 lxc.cgroup.devices.allow = c 136:* rwm
13 lxc.cgroup.devices.allow = c 5:2 rwm
14 lxc.cgroup.devices.allow = c 254:0 rwm
15 lxc.cgroup.devices.allow = c 10:200 rwm

◦ Some metadata about the container

◦ Where is the rootfs located

◦ Hostname of the container

◦ What to mount from the host

◦ /proc and /sys

1 # Distribution configuration
2 lxc.arch = x86_64
3 # Container specific configuration
4 lxc.rootfs.path = dir:/var/lib/lxc/openwrt/rootfs
5 lxc.uts.name = openwrt
6 # Mount entries
7 lxc.mount.entry = /proc proc /proc nodev,noexec,

nouid 0 0
8 lxc.mount.entry = sysfs sys sysfs default 0 0

◦ Network namespace configuration

◦ We can read this as follows:

• Create eth0 device inside a container

• Use a veth (virtual cable) to connect this
eth0 from container to lxcbr0 interface
(a bridge interface) on the host

◦ It can be configured in many different ways –
depends on the use case

1 # Network configuration
2 lxc.net.0.type = veth
3 lxc.net.0.link = lxcbr0
4 lxc.net.0.flags = up
5 lxc.net.0.name = eth0

Working with LXC
◦ Once configuration and root file system are ready issue lxc-ls

• If the container is configured properly and its root file system is valid, the container should
appear on the list

◦ Start the container with

lxc-start -n <container_name>

◦ There will be no output, but the container should start

◦ Check that the container is running

lxc-info -n <container_name>

◦ Container runs in the background and we can now run applications inside it

Working with LXC
◦ Entering the shell of the container (attaching inside of the container)

lxc-attach -n <container_name>

◦ From the shell, it is possible to do everything as on host GNU/Linux system

◦ To exit, type exit

◦ To stop the container

lxc-stop -n <container_name>

◦ This demonstration is a simple case of a single container created by root user and with no
particular functionalities – so what can be done with the container?

LXD Container Manager

LXD

◦ Container manager, useful when running and configuring large numbers of Linux containers

◦ Concept

• Server + client side (communicating over REST API)

• Accessible locally and remotely over network

• Command line tool for working with containers

◦ Supports the full LXC feature set

• By default, LXD creates unprivileged containers (what we demonstrated is the creation of
privileged containers by the root user which might have some security issues)

LXD - Prerequisites

◦ Initialized LXD daemon

◦ Root file system and metadata

• Metadata = data about the container

◦ Container image

• Image from which the container will be created

• Image = rootfs + metadata

◦ Container profile

• Basic container configuration

LXD init

◦ Configuring the LXD daemon

lxd init

Prepare rootfs

◦ Create gentoo directory inside the home directory

1 cd ~
2 mkdir gentoo

◦ Copy compressed root file system on that location

cp gentoo-rootfs.tar.gz ~/gentoo

◦ In the same directory, create metadata file for the container

• Metadata describes basic information about the container

• Can be written in YAML format or JSON (examples below use YAML)

◦ Minimal metadata template file

vim metadata.yaml

1 architecture: "aarch64"
2 creation_date: 1554382805 # Mandatory, must be unique for each container. Take this value:

date +%s
3 properties:
4 architecture: "aarch64"
5 description: "Example of Gentoo virtual router"
6 os: "Gentoo Linux"
7 release: "0.1"
8 variant: "Custom"

Import rootfs and metadata as image

◦ Compress both image and metadata

tar cf gentoo-matadata.tar metadata.yaml

◦ Import compressed root file system and metadata into LXD

lxc image import gentoo-metadata.tar.gz gentoo-rootfs.tar.gz --alias GentooImage

◦ If everything went well, the image should appear on LXD image list

lxc image list

Prepare container profile
◦ Create minimal YAML file to define the container profile: vim gentoo-profile.yaml

1 config: {}
2 description: Gentoo LXD profile
3 devices:
4 eth0:
5 name: eth0
6 nictype: macvlan
7 parent: eth1 #this can vary, depending on how is the interface named on host (enpXXX,

ethXXX, enoXXX...)
8 type: nic
9 root:
10 path: /
11 pool: workstation-pool
12 type: disk
13 name: default

LXD

◦ At this point the profile is not attached to any container, and is actually just a file

◦ First step is to create a profile for LXD and apply the YAML file with the profile

1 lxd profile create Gentoo-profile
2 lxd profile edit Gentoo-profile < gentoo-profile.yaml

◦ This profile can be used over n number of containers

LXD

◦ Next step is to apply the profile to a container

◦ First, the container must be created from the image

lxc init GentooImage GentooContainer

◦ Then, apply the profile to the initialized container

lxc profile apply Gentoo-Profile GentooContainer

Verifying the process

◦ To verify what has been done (and if it went OK)

• Checking images
lxc image list

• Checking containers
lxc ls

• Checking available profiles
lxc profile list

Verifying the process

◦ If necessary, profiles can be modified on the fly and all changes applied in real time

• Checking a specific profile
lxc profile show Gentoo-profile

• Modifying a specific profile
lxc profile edit Gentoo-profile

Starting the container

◦ The container is ready to start at this point

lxc start GentooContainer

◦ How does this all fit together?

• Inspect htop

• Network namespace

Starting the container - next steps

◦ Run any application inside the container

• To attach inside the container, execute bash

lxc exec GentooContainer –- /bin/bash

• From this shell we can do everything as regular Linux users

• Any other application can be run in the same way
lxc exec GentooContainer –- /bin/bash

◦ With this principle different servers and applications can be run inside the container to isolate
them from the rest of the host system

systemd-nspawn

systemd-nspawn

◦ Part of the systemd project — a chroot alternative

• ”Fully virtualizes the file system hierarchy, as well as the process tree, the various IPC
subsystems and the host and domain name” — SYSTEMD-NSPAWN(1)

◦ Concept

• Command line tool for working with containers

• Integrates with systemd on the host via the systemd-machined virtual machine and con-
tainer registration manager

systemd-nspawn — Prerequisites

◦ systemd-nspawn does not require special metadata to boot containers

◦ Usually, container root filesystem directory is placed in the /var/lib/machines directory,
which can also be a symlink to a directory

◦ Container filesystems for somedistributions canbe created via appropriate utilities e.g. pacstrap
for Arch Linux, and debootstrap for Debian

Launching containers using the CLI

◦ Launching a container is straightforward:

systemd-nspawn --boot --directory=/var/lib/machine/gentoo

◦ CLI tool allows specifying configuration options such as capabilities and networking

1 systemd-nspawn --boot --directory=/var/lib/machine/gentoo
2 --capability=CAP_NET_ADMIN \
3 --network-macvlan=eth0

Starting containers as a service

◦ When using the CLI tool containers are foreground processes

◦ Containers can be run in the background with the systemd-nspawn@.service unit

• Enable and start the machines.target

systemctl enable machines.target

• Enable and start the systemd-nspawn@<machine>.service , where <machine> speci-
fies an nspawn container in /var/lib/machines

systemctl enable --now systemd-nspawn@gentoo.service

◦ Optionally configure container in the /etc/systemd/nspawn/<machine>.nspawn file

Example: setting up networking

Setting up network inside the container

◦ Practical example – setting up the network inside the container

◦ As defined in the container profile, the interface from the container is connected directly to a
physical interface on the host machine with macvlan interface

◦ macvlan creates a new interface with a different MAC address than the host one and allows
traffic to go directly through (as opposed to a bridge where it has to hit the bridge first)

◦ In theory, there is nothing wrong with this configuration

◦ In practice, network has to be configured inside the container as well

◦ The user can either set up static IP on the inside interface or set dynamic IP (meaning that the
IP on the container interface will be offered by someone else – DHCP server running some-
where in the network)

◦ How?

• systemd

• Daemon in role of PID 1 – master process, initial process from which all other processes
are spawned

• One of the domains directly under systemd control is networking

• As any other program, systemd and its components are configured with different con-
figuration files located under /etc/system/(network)

◦ Listing out /etc/systemd/network might show that it is empty so a new file containing
network configuration must be created

◦ A good practice is to name the file <file_name>.network

◦ This file will define the following:

• Match the given interface

• Assign it with IPv4 address from a DHCP server

◦ Create a file

vim /etc/systemd/network/eth0.network

◦ Add the following:

1 [Match] # Match this interface
2 Name=eth0
3
4 [Network] # Assign IPv4 address from a DHCP server
5 DHCP=ipv4
6
7 [DHCP]
8 RouteMetric=10

◦ Restart systemd networking service

systemctl restart systemd-networkd

◦ At this point, on the eth0 interface an IP address should appear and it should be from the
same subnet as the IP address offered on the physical interface of the host

◦ Try pinging the Internet

ping 8.8.8.8

Container technologies
marko.golec@sartura.hr · juraj.vijtiuk@sartura.hr · jakov.petrina@sartura.hr

Feedback form: forms.gle/WKPBDoS69gssafAE9

info@sartura.hr · www.sartura.hr

	INTRODUCTION TO GNU/LINUX
	VIRTUALIZATION
	LINUX FEATURES
	LINUX CONTAINERS (LXC)
	SYSTEMD-NSPAWN
	SETTING UP NETWORK INSIDE THE CONTAINER

