
Zagreb, Cloud analysis

Container technologies
Davor Popović · Marko Ratkaj

June 15, 2019

About us

◦ Delivering solutions based on Linux, OpenWrt and Yocto

• Focused on software in network edge and CPEs

◦ Continuous participation in Open Source projects

◦ www.sartura.hr

https://www.sartura.hr/

Introduction to GNU/Linux

◦ Written by Linus Torvalds

◦ First Linux prototypes publicly released in 1991

• https://github.com/zavg/linux-0.01

◦ Version 1.0 release on March 14, 1994

◦ Written from the ground up

https://github.com/zavg/linux-0.01

◦ Linux = operating system kernel

◦ GNU/Linux distribution = kernel + userspace (Ubuntu, Arch Linux, Gentoo, Debian, OpenWrt,
Mint, ...)

◦ Userspace = set of libraries + system software

• Libraries = resources for other software

• System software = platform/environment for other software to run (operating system)

◦ Each distribution is specific (depending on the purpose), but all follow the same principles:

• Kernel = all are based on the Linux kernel

• Folder hierarchy = all follow similar folder hierarchy (minor differences between distros)

• Init systems = all have init systems (most use systemd, some use SystemV (sysV) or
other (openRC)

• Package managers = all have package managers, but they differ between distributions
(apt, pacman, emerge, yum, etc.)

FIGURE 1 Linux file system structure

(GNU/Linux) kernel

◦ Core part of an operating system which manages system resources

• CPU

• RAM

• Input/Output devices (keyboards,mouse, disk drives, printers, USBdevices, network adapters,
and display devices)

◦ The first program loaded into RAM by the bootloader (BIOS, U-Boot…)

◦ Acts as a layer between software/applications (userspace) and hardware

Linux kernel

◦ Operating systems have two spaces of operation:

• Kernel space - protected memory space and full access to the device’s hardware

• Userspace - space in which all other application run
• Has limited access to hardware resources
• Accesses hardware resources via kernel
• Userspace applications invoke kernel services with system calls

Example: opening a file

◦ Application wants to open a file→ invokes library call for open→ invokes system call for open
→ kernel opens a file from disk signaling the success result back to application in the same
ladder

◦ A small programming detail for C language:

• For opening files fopen(const char *path, const char *mode) from stdio.h is
used (glibc)

• Programs invoke this call from the source code with necessary parameters

• fopen contains a system call for opening a file which is a function from open family of
system calls

Example: opening a file

◦ Example taken from https://github.com/freebsd/freebsd/blob/master/lib/libc/stdio/fopen.c

1 FILE *
2 fopen(const char * __restrict file, const char * __restrict mode)
3 {
4 ...
5 if ((f = _open(file, oflags, DEFFILEMODE)) < 0) {
6 fp->_flags = 0;^^I^^I^^I/* release */
7 return (NULL);
8 }
9 ...

◦ system call open returns a pointer to structure FILE back to the caller

https://github.com/freebsd/freebsd/blob/master/lib/libc/stdio/fopen.c

◦ Every other interaction follows the same principle but with a different system call

User	process

Kernel	process

User	process
executing Calls	system	call Return	from	system

call

Execute	system	call

Trap	mode
bit	=	0

Return	mode
bit	=	0

FIGURE 2 Linux kernel system calls

Linux kernel

◦ System calls provide the following services from the kernel to applications:

1. Process creation and management

2. Main memory management

3. File Access, directory and file system management

4. Device handling (I/O)

5. Protection

6. Networking, etc.

Linux kernel

◦ System calls can be grouped in the following types:

1. Process control: end, abort, create, terminate, allocate and free memory.

2. File management: create, open, close, delete, read file etc.

3. Device management

4. Information maintenance

5. Communication

User mode

User applications E.g. bash, LibreOffice, GIMP, Blender, Mozilla Firefox, etc.

Low-level system
components

System daemons:
systemd, runit, logind,
networkd, PulseAudio,
…

Windowing system:
X11, Wayland,
SurfaceFlinger
(Android)

Other libraries: GTK+, Qt, EFL, SDL, SFML,
FLTK, GNUstep, etc.

Graphics: Mesa, AMD
Catalyst, …

C standard library Up to 2000 subroutines depending on C library (glibc, musl, uClibc, bionic) (open() , exec() , sbrk() , socket() ,
fopen() , calloc() , …)

Kernel mode Linux Kernel

About 380 system calls (stat , splice , dup , read , open , ioctl , write , mmap , close , exit , etc.)

Process scheduling
subsystem IPC subsystem Memory management

subsystem Virtual files subsystem Network subsystem

Other components: ALSA, DRI, evdev, LVM, devicemapper, Linux Network Scheduler, Netfilter Linux SecurityModules:
SELinux, TOMOYO, AppArmor, Smack

Hardware (CPU, main memory, data storage devices, etc.)

TABLE 1 Layers within Linux

Virtualization

◦ Virtualization = creating a virtual version of hardware/software

◦ Term coined in 1960s with mainframe computers

◦ What can be virtualized? - basically everything

• Hardware (with emulation)

• Storage devices (with pooling of physical storage from multiple storage devices into a
single logical storage device)

• Can be applied on HDD, RAM

• Networking, processes (using various kernel features that allow resource separation)
• These are operating system features rather than applications

• Software/applications
• Running applications in separate machines/containers and making them portable
• Running different services in separate machines/containers (cloud-based applica-
tions)

Virtualization Concepts
Two virtualization concepts:

◦ Hardware virtualization (full/para virtualization)

• Emulation of complete hardware (virtual machines - VMs)

• VirtualBox, QEMU, etc.

◦ Operating system level virtualization

• Utilizing kernel features for running more than one userspace instance

• Each instance is isolated from the rest of the system and other instances

• Method for running isolated processes is called a container

• Docker, LXC, Solaris Containers,Microsoft Containers, rkt, etc.

Virtual machines use hypervisors (virtual machine managers – VMM)

◦ Allowsmultiple guest operating systems (OS) to run on a single host system at the same time

◦ Responsible for resource allocation – each VM uses the real hardware of the host machine
but presents system components (e.g. CPU, memory, HDD, etc.) as their own

◦ Two types of hypervisors (VMMs)

• Type 1
• Native or bare-metal hypervisors running directly on host’s hardware and controlling
the resources for Vms (Microsoft Hyper-V, VMware ESXi, Citrix XenServer)

• Type 2
• Hosted hypervisors running within a formal operating system environment.
• Host OS acts as a layer between hypervisor and hardware.

◦ Containers do not use hypervisors

◦ Containers sometimes come with container managers

• Used for managing containers rather than resource allocation

◦ Containers use direct system calls to the kernel to perform actions

• Kernel is shared with the host

◦ Idea behind containers is to pack the applications with all their dependencies and run them in
an environment that is isolated from the host

◦ Two types of containers:

• Full OS containers – contain full root file system of the operating system
• Meant to run multiple applications at once
• Provide full userspace isolation
• LXC, BSD jails, OpenVZ, Linux VServer, Solaris Zones

• Application containers – contain an application which is isolated from the rest of the
system (sandboxing)

• Application behaves at runtime like it is directly interfacing with the original operating
system and all the resources managed by it

• Docker, rkt

Parameter VMs Containers

Size Few GBs Few MBs

Structure Full contained environment Rely on underlying OS

Resources Contains full OS with no dependencies on the underlying OS
(e.g. Windows running on Linux and vice-versa) Rely on underlying OS

Boot time Few second overhead Millisecond overhead

TABLE 2 VMs vs containers - Differences

Virtualization Containers

Host	OS Host	OS

Hypervisor

Guest
OS

Guest
OS

Guest
OS

Libraries

Applications

Binaries

Container ContainerContainer

Applications rootfs

HardwareHardware

FIGURE 3 Virtualization vs Containers

Why use virtualization?

◦ Cost effective, resource savings

• Multiple machines can be virtualized on a single machine

◦ Management

• Everything can be managed from a single point, usually using a management software
for virtual machines and/or containers

◦ Maintenance

• Once deployed, machines can be easily switched for newmachines if needed in the future

Linux Containers (LXC)

◦ LXC is a userspace interface for the GNU/Linux kernel containment features

• Allows operating system level virtualization on GNU/Linux systems

◦ In-between chroot and complete VM

• Sometimes referred to as chroot-on-steroids

◦ Does not depend on hardware support for virtualization

• Ideal for containerization/virtualization on embedded devices

◦ Configurable as a full feature file system (rootfs) or minimized for running single applications

◦ Relies heavily on kernel features

Kernel features
◦ LXC uses the following kernel features:

• Namespaces
• ipc, uts, mount, pid, network and user

◦ Apparmor and SELinux profiles

◦ Seccomp policies

◦ Kernel capabilities

◦ CGroups

◦ Chroots (using pivot_root)

Namespaces

◦ Lightweight process virtualization

◦ Namespaces = way of grouping items under the same designation

• Kernel feature which organizes resources for processes
• One process sees one set of resources
• Another process sees another set of resources
• One process cannot see other processes’ set of resources

• Each process has its own namespace – a set of resources uniquely allocated for that
process

• Namespaces allow processes to see the same parts of the system differently

Namespaces

◦ GNU/Linux kernel supports the following types of namespaces:

• network

• uts

• PID

• mount

• user

Namespaces - Network

◦ Logical copy of the network stack containing its own network features (routes, firewall rules
and network devices)

◦ Initial network namespace:

• Initial network namespace = loopback device + physical devices + networking tables + …

◦ Every other newly created namespace contains only a loopback device

• New network namespace instance = loopback device

◦ Every other device must be added manually

◦ To have network devices every container must be configured via configuration files

Namespaces - Network

◦ Network namespaces are completely isolated from each other

• Host network namespace and container namespaces do not see each other

• To get to the network, network namespaces need to be connected

• E.g. the inside interface in the container must be connected to a physical interface on the
host to go online

Namespaces - Network

◦ Connecting network namespaces

• Done with a virtual interface called veth

• veth is actually a ”virtual cable” handled by the kernel – one end is ”plugged” into a con-
tainer, the other end into the host interface

• Done with a virtual interface called macvlan

• macvlan is a virtual interface which has its own MAC address and can be directly asso-
ciated with a physical interface of the host

Host

netns1

eth0

br0

Switch

netns2

veth0

veth1

veth0

veth2

FIGURE 4 Network namespaces - veth

Host

netns1

eth0

Switch

netns2

macv1

macv1

macv2

macv2

FIGURE 5 Network namespaces - macvlan

Namespaces - PID
◦ Process = current program in execution (set of instructions that are currently occupying CPU
cycles)

◦ PID = way of organizing processes inside of the kernel by a unique number – each process is
assigned a number

• Special case regarding process with PID 1 – the first process started when OS is booted
up (called init system) which starts all other processes

• GNU/Linux supports multiple init systems – systemd, systemV, openRC, etc.

• Processes communicate with signals (e.g. kill signal)

◦ PID namespaces kernel feature enables isolating PID namespaces

• Processes in different PID namespaces can have the same PID

Namespaces - PID
◦ Kernel creates namespace one – NS1

◦ Kernel creates namespace two – NS2

◦ NS1 contains PID 1 and all other PIDs

◦ NS2 contains PID1 and all other PIDs

◦ NS1 can see PID 1 of NS2 but with some other PID (e.g. PID 10001) and all other PIDs of NS2

◦ NS2 can not see PIDs from NS1

◦ This way, isolation is achieved from these namespaces – processes inside NS2 are only func-
tional if NS2 is isolated from NS1

• In NS2 a process cannot send signal (e.g. kill) to a host machine

Namespace 1

PID 1
PID 100
PID n
...
PID 1230
(this is init from the container)
PID 1231
(this is another PID from container)
...

Namespace 2

PID 1
PID 2
PID n

...

FIGURE 6 Namespaces - PID

CGroups

◦ PID namespace allows processes to be grouped together in isolated environments

◦ Group of processes (or a single process) needs access to certain hardware components

• E.g. RAM, CPU, …

◦ Kernel provides the control groups (CGroups) feature for limiting how process groups access
and use these resources

CGroups

◦ 4 main purposes

• Limiting resources = groups can be set to not exceed a pre-configured memory limit (i.e.
this group of processes can access X MB of RAM)

• Prioritization = some groups may get a larger share of CPU utilization (i.e. this group of
processes can utilize 43% if CPU 1, while another group only 5%)

• Accounting = measures a group’s resource usage (i.e. this group of processes has been
using 5% of CPU)

• Useful for statistics

• Control = used for freezing, snapshoting/checkpointing and restarting

CGroups

◦ CGroups uses a Virtual File System

• /sys/cgroups

• All CGroups actions are performed via file system actions

Working with LXC

◦ Install LXC package with your distribution’s package manager

◦ Kernel must have all the required features enabled

• Some distributions may come with a complete required feature set (e.g. Ubuntu)

• Some distributions do not come with a complete required feature set

• Some distributions require manual kernel configurations (e.g. Gentoo)

• After installing LXC, it is required to check that the kernel has everything it needs with
lxc-checkconfig command

Working with LXC

◦ Each container needs its own configuration file

◦ Each container needs its own root file system which will run in side of the container

• Root file system contains all the necessary libraries, applications and environment set-
tings

• Root file system needs to be either manually prepared or downloaded from remote online
repositories

◦ Place configuration file and root file system on the same location:

• /var/lib/lxc/<container_name>/

Configuring the container

◦ Container configuration defines the following components:

• Capabilities – what the container is allowed to do from an administrative perspective

• Cgroups – which resources of the host are allowed for the container (e.g. configuring
which devices can the container use)

• Mount namespaces – which of the host folders/virtual file systems will be allowed for
mounting inside the container (virtual file systems such as proc or sys)

• Network namespaces – which devices will be created inside the container and how they
connect to the outside network

◦ First part of the file handles capabilities

◦ A list of all the capabilites dropped (not
allowed) for the container

◦ Usually best to consult with man pages
http://man7.org/linux/man-
pages/man7/capabilities.7.html

1 lxc.cap.drop = mac_admin
2 lxc.cap.drop = mac_override
3 lxc.cap.drop = sys_admin
4 lxc.cap.drop = sys_boot
5 lxc.cap.drop = sys_module
6 lxc.cap.drop = sys_nice
7 lxc.cap.drop = sys_pacct
8 lxc.cap.drop = sys_ptrace
9 lxc.cap.drop = sys_rawio
10 lxc.cap.drop = sys_resource
11 lxc.cap.drop = sys_time
12 lxc.cap.drop = sys_tty_config
13 lxc.cap.drop = syslog
14 lxc.cap.drop = wake_alarm

http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html

◦ The second part is CGroup – what is
allowed for this container (as mentioned
before, a container can be seen as a set of
processes grouped together, meaning this
shows what these processes can access)

◦ It uses traditional Linux desigantions for
devices (try running ls -l /dev which
will list all the devices with corresponding
major:minor numbers)

◦ E.g. bold entry is for console on PC

1 lxc.cgroup.devices.deny = a
2 lxc.cgroup.devices.allow = c 1:1 rwm
3 lxc.cgroup.devices.allow = c 1:3 rwm
4 lxc.cgroup.devices.allow = c 1:5 rwm
5 lxc.cgroup.devices.allow = c 5:1 rwm
6 lxc.cgroup.devices.allow = c 5:0 rwm
7 lxc.cgroup.devices.allow = c 4:0 rwm
8 lxc.cgroup.devices.allow = c 4:1 rwm
9 lxc.cgroup.devices.allow = c 1:9 rwm

10 lxc.cgroup.devices.allow = c 1:8 rwm
11 lxc.cgroup.devices.allow = c 1:11 rwm
12 lxc.cgroup.devices.allow = c 136:* rwm
13 lxc.cgroup.devices.allow = c 5:2 rwm
14 lxc.cgroup.devices.allow = c 254:0 rwm
15 lxc.cgroup.devices.allow = c 10:200 rwm

◦ Some metadata about the container

◦ Where is the rootfs located

◦ Hostname of the container

◦ What to mount from the host

◦ /proc and /sys

1 # Distribution configuration
2 lxc.arch = x86_64
3 # Container specific configuration
4 lxc.rootfs.path = dir:/var/lib/lxc/openwrt/rootfs
5 lxc.uts.name = openwrt
6 # Mount entries
7 lxc.mount.entry = /proc proc /proc nodev,noexec,

nouid 0 0
8 lxc.mount.entry = sysfs sys sysfs default 0 0

◦ Network namespace configuration

◦ We can read this as follows:

• Create eth0 device inside a container

• Use a veth (virtual cable) to connect this
eth0 from container to lxcbr0 interface (a
bridge interface) on the host

◦ It can be configured in many different ways –
depends on the use case

1 # Network configuration
2 lxc.net.0.type = veth
3 lxc.net.0.link = lxcbr0
4 lxc.net.0.flags = up
5 lxc.net.0.name = eth0

Working with LXC
◦ Once configuration and root file system are ready issue lxc-ls

• If the container is configured properly and its root file system is valid, the container should
appear on the list

◦ Start the container with

lxc-start -n <container_name>

◦ There will be no output, but the container should start

◦ Check that the container is running

lxc-info -n <container_name>

◦ Container is running in the background, and we can now run applications inside of the con-
tainer

Working with LXC
◦ Entering the shell of the container (attaching inside of the container)

lxc-attach -n <container_name>

◦ From the shell, it is possible to do everything as on host GNU/Linux system

◦ To exit, type exit

◦ To stop the container

lxc-stop -n <container_name>

◦ This demonstration is a simple case of a single container created by root user and with no
particular functionalities – so what can be done with the container?

Working with LXC
◦ Containers generally have two purposes

1. Development – when developing, containers allow developers to share the same environ-
ment – once a container is set, it can be deployed on many machines with exactly the
same libraries and user space

2. Deployment – containers allow quick deployment. It is possible to run applications in the
cloud inside of the container allowing external access to them.

• E.g. running a container with web servers allowing access from the outside of the
network to each web server. If the security is compromised, in theory the attacker
would be inside of the container isolated from the rest of the cloud. This method
allows running multiple web servers on a single physical machine all listening on
the same port. The additional effort is in creating firewall rules between the outside
network and containers.

Working with LXC

◦ Cloud machines allow running tens of thousands containers at once

• All hell breaks loose when all these containers need to be administered and supported in
the future

◦ LXD was created to answer challenges with managing huge numbers of containers

LXD
◦ LXD = container manager, useful when running and configuring huge amounts of Linux con-
tainers

◦ Concept

• Server + client side (communicating over REST API)

• Accessible locally and remotely over network

• Command line tool for working with containers

◦ Supports the full LXC feature set

• By default, LXD creates unprivileged containers (what we demonstrated is the creation of
privileged containers by the root user which might have some security issues)

◦ Scalable – allows creating containers over thousands of hardware nodes (PC, servers, embed-
ded)

◦ Intuitive – simple API and CLI

◦ Image-based – huge variety of distributions available over networkd

◦ Allows live migrations

◦ Resources control (CGroups – CPU, memory, I/O, …)

◦ Device pass-through (allowing USB, GPU, character devices, …)

◦ Networking

◦ Storage (storage pools and volumes)

LXD - Prerequisites

◦ Initialized LXD daemon

◦ Root file system and metadata

• Metadata = data about the container

◦ Container image

• Image from which the container will be created

• Image = rootfs + metadata

◦ Container profile

• Basic container configuration

LXD init

◦ Configuring the LXD daemon

lxd init

Prepare rootfs

◦ Create gentoo directory inside the home directory

1 cd ~
2 mkdir gentoo

◦ Copy compressed root file system on that location

cp gentoo-rootfs.tar.gz ~/gentoo

◦ In the same directory, create metadata file for the container

• Metadata describes basic information about the container

• Can be written in YAML format or JSON (examples below use YAML)

◦ Minimal metadata template file

vim metadata.yaml

1 architecture: "aarch64"
2 creation_date: 1554382805 # mandatory and must be valid. Each container must have unique.

Take this value: date +%s
3 properties:
4 architecture: "aarch64"
5 description: "Example of Gentoo virtual router"
6 os: "Gentoo Linux"
7 release: "0.1"
8 variant: "Custom"

Import rootfs and metadata as image

◦ Compress both image and metadata

tar cf gentoo-matadata.tar metadata.yaml

◦ Import compressed root file system and metadata into LXD

lxc image import gentoo-metadata.tar.gz gentoo-rootfs.tar.gz --alias GentooImage

◦ If everything went well, the image should appear on LXD image list

lxc image list

LXD

◦ At this point, the container is still not created - only the image for the container is prepared
(root file system + metadata)

◦ Containers do have default profiles but in practice each container needs a profile with different
configuration

◦ Profile = initial configuration for the container (networking, storage, hostname, …)

◦ The example below creates a simple profile with one network interface connected to the host
physical interface with macvlan virtual interface (see Figure 5)

Prepare container profile
◦ Create minimal YAML file to define the container profile: vim gentoo-profile.yaml

1 config: {}
2 description: Gentoo LXD profile
3 devices:
4 eth0:
5 name: eth0
6 nictype: macvlan
7 parent: eth1^^I^^I^^I^^I#this can vary, depending on how is the interface named on host (

enpXXX, ethXXX, enoXXX...)
8 type: nic
9 root:
10 path: /
11 pool: workstation-pool
12 type: disk
13 name: default

LXD

◦ At this point the profile is not attached to any container, and is actually just a file

◦ First step is to create a profile for LXD and apply the YAML file with the profile

1 lxd profile create Gentoo-profile
2 lxd profile edit Gentoo-profile < gentoo-profile.yaml

◦ This profile can be used over n number of containers

LXD

◦ Next step is to apply the profile to a container

◦ First, container must be created from the image

lxc init GentooImage GentooContainer

◦ Then, apply the profile to the initialized container

lxc profile apply Gentoo-Profile GentooContainer

Verifying the process

◦ To verify what has been done (and if it went OK)

• Checking images
lxc image list

• Checking containers
lxc ls

• Checking available profiles
lxc profile list

Verifying the process

◦ If necessary, profiles can be modified on the fly and all changes applied in real time

• Checking a specific profile
lxc profile show Gentoo-profile

• Modifying a specific profile
lxc profile edit Gentoo-profile

Starting the container

◦ The container is ready to start at this point

lxc start GentooContainer

◦ How does this all fit together?

• Inspect htop

• Network namespace

Starting the container - next steps

◦ Run any application inside the container

• To attach inside the container, execute bash

lxc exec GentooContainer –- /bin/bash

• From this shell we can do everything as regular Linux users

• Any other application can be run in the same way
lxc exec GentooContainer –- /bin/bash

◦ With this principle different servers and applications can be run inside the container to isolate
them from the rest of the host system

◦ Once a container is stopped (or destroyed), applications have no power

SDN - practical application of Containers

◦ The core network component = virtual router

◦ Virtual router = LXC container running Linux with networking set for router performance

• What is a router?
• Forwards packets between two different networks
• One side is LAN one side is WAN – with NAT in-between

Internet

LAN	virtual
switch

Virtual
routers

WAN	virtual
switch

Access
point

Server/Cloud

FIGURE 7 Real life example - Software defined networking (SDN)

◦ Each router needs to have profiles defined to support two sides of the network (LAN andWAN)

◦ How can this be done?

1 eth0:
2 name: eth-wan
3 nictype: macvlan
4 parent: eth2
5 type: nic
6 eth1:
7 name: eth-lan
8 nictype: macvlan
9 parent: tap1
10 type: nic

◦ How to configure network inside the container? Remember systemd?

◦ LAN should behave as a DHCP server

◦ WAN should behave as a DHCP client

◦ Network Addres Translation (NAT) in between

• Keeps track who is going where on the Internet

• Achieved with Linux firewall (iptables)

Container technologies
davor.popovic@sartura.hr · marko.ratkaj@sartura.hr

info@sartura.hr · www.sartura.hr

	INTRODUCTION TO GNU/LINUX
	VIRTUALIZATION
	LINUX CONTAINERS (LXC)

