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About us

◦ Davor Popović, Mak Krnic

◦ Delivering solutions based on Linux, OpenWrt and Yocto
• Focused on software in network edge and CPEs

◦ Continuous (commercial) participation in Open Source projects



Gentoo Linux



About Gentoo Linux

◦ Source-based Linux distribution

◦ Almost nothing out of the box
• User-defined base system
• Manual kernel compilation

• genkernel tool
• portage/emerge package manager



Portage

◦ The heart of Gentoo

◦ The only package requiring dependencies

◦ Support for both binary and source-based packages



/etc/portage/*

◦ System-wide configuration

◦ make.conf

• CHOST , CBUILD , ACCEPT_KEYWORDS , USE , ROOT , MAKEOPTS
, PORTDIR

◦ repos.conf

• Source repositories configuration



Portage repositories and profiles

◦ Repositories
• Default repository at /usr/portage

• Custom repositories ( local/git/... )
• Patched or unsupported packages
• Custom profiles

◦ Profiles
• By default located in /usr/portage/profiles

• In any of the repositories



Cross-compiling

◦ Process of creating binaries for use on different platform than the
one it is being compiled on

◦ cross-toolchain
• gcc
• binutils – ld, ar, objcopy, objdump, ...
• libc – glibc, uClibc, musl, ...



◦ crossdev - gentoo native cross-toolchain generator

◦ crosstool-ng – alternative cross-toolchain generator

◦ Other toolchains (Buildroot, openembedded)

◦ https://toolchains.bootlin.com/

https://toolchains.bootlin.com/


1 // hello.c
2 #include<stdio.h>
3
4 #ifdef __aarch64__
5 #define ARCHITECTURE "arm64"
6 #elif __amd64__
7 #define ARCHITECTURE "x86_64"
8 #else
9 #define ARCHITECTURE "unknown"

10 #endif
11
12 int main() {
13 printf("Hello, world, from " ARCHITECTURE "\n");
14
15 return 0;
16 }



1 gcc ./hello.c -o hello.x86_64
2 aarch64-unknown-linux-gnu-gcc ./hello.c -o hello.aarch64

1 hello.x86_64: ELF 64-bit LSB pie executable, x86-64, version 1 (
SYSV), dynamically linked, interpreter /lib64/ld-linux-x86
-64.so.2, for GNU/Linux 3.2.0, not stripped

2 file hello.aarch64
3 hello.aarch64: ELF 64-bit LSB pie executable, ARM aarch64,

version 1 (SYSV), dynamically linked, interpreter /lib/ld-
linux-aarch64.so.1, for GNU/Linux 3.7.0, not stripped

1 ./hello.x86_64
2 Hello, world, from x86_64
3
4 ./hello.aarch64
5 zsh: exec format error: ./hello.aarch64



crossdev

◦ Gentoo native cross toolchain generator

◦ Integration with system
• gcc, binutils, etc. managed by portage

◦ Automatically using build host’s portage configuration



cross-emerge

◦ Wrapper scripts for emerge

◦ Using host’s (cross) toolchain
• Producing binaries for the target architecture

◦ Usable with any toolchain

◦ Similar outcome as chroot

◦ Installs full OS structure to new root

◦ Suitable for creating rootfs



Installing the base file system

◦ cross-emerge [-av] @world

• Profile dependent
• Init system, shell, utils

◦ Edit /etc/shadow

• root:*:17140:0:::::



Cross-compiling issues

◦ Somepackages can’t be cross-compiled for all architectures or are
built incorrectly

◦ QEMU
• A generic and open source machine emulator and virtualizer

◦ Create almost complete rootfs and then finish building it in QEMU

◦ Downside: slow



Kernel

◦ Not built using (cross) emerge

◦ Obtaining the source manually from kernel.org

◦ Cross-compiling (env vars)
• ARCH, CROSS_COMPILE, INSTALL_MOD_PATH, INSTALL_PATH

◦ Device tree (.dts and .dtb)



Assembling it all

◦ Assumptions
• Rootfs (built with cross-emerge) at /opt/rootfs

• Kernel source at /opt/rootfs/usr/src/linux

• Target dir at /opt/stage4

◦ Copy base files
1 cd /opt/rootfs
2 rsync -ruta * --exclude 'usr/src/*' --exclude 'tmp/*' --

exclude 'usr/portage/*'
3 /opt/stage4/



◦ Copy the kernel and device tree
1 mkdir /opt/stage4/boot
2 cd usr/src/linux/
3 cp arch/arm64/boot/Image /opt/stage4/boot/Image
4 cp arch/arm64/boot/dts/marvell/armada-8040-mcbin-singleshot.

dtb /opt/gentoo/rootfs/boot/armada-8040-mcbin-singleshot
.dtb



Flashing the image

◦ SD card

cp -a /opt/stage4/* /mnt/sdcard

◦ Flash ROM

1 fallocate -l 128M ./rootfs.ext4
2 mkfs.ext4 ./rootfs.ext4
3 mount ./rootfs.ext4 /mnt/new-rootfs
4 cp -a /opt/stage4/* /mnt/new-rootfs/
5 umount /mnt/new-rootfs
6 dd if=./rootfs.ext4 /dev/sdX



Bootloader

◦ U-Boot
1 setenv bootargs 'console=ttyS0,115200 root=/dev/mmcblk1p1

init=/lib/systemd/systemd rw rootwait'
2 setenv bootcmd 'mmc dev 1; ext4load mmc 1:1 0x5000000 /boot/

Image;ext4load mmc 1:1 0x4f00000 /boot/armada-8040-mcbin
-singleshot.dtb; booti 0x5000000 – 0x4f00000'

3 saveenv
4 boot



First boot

◦ Login as root, without password

◦ Configure the system
• Root password
• Network
• Packages
• ...



Questions



Linux Containers (LXC/LXD)



Virtualization Concepts

Two virtualization concepts:

◦ Hardware (full/para) virtualization:
• Virtual machines - emulating complete hardware

◦ Operating system level virtualization:
• Containers - kernel feature for simultaneously running more
than one
user-space instance
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What is LXC?

◦ Operating system level virtualization on GNU/Linux

◦ In-between chroot and complete virtual machine

◦ Can be used without hardware support for virtualization on SoC
• Excellent for virtualization on embedded devices

◦ Easily configured as full featured file systemorminimized as single
app



LXC Features

◦ Namespaces
• Lightweight process virtualization
• A single or multiple processes have a different view on the
system

• Current support for: ipc , uts , mount , pid , network and
user

• In the past – support for running only privileged (root) contain-
ers

• User namespaces – allow running unprivileged containers



◦ Apparmor and SELinux Profiles
• Linux application security system
• Switching to defined profiles/contexts before a container ac-
tually starts

◦ Seccomp policies
• Allow filtering system calls

◦ Capabilities
• Setting upwhich capabilities to keep/drop before starting con-
tainers

◦ Cgroups
• Used for setting resource quotas (CPU, memory, I/O limits...)
• Used for setting character or block devices accessible from
container on the host



What is LXD?

◦ Container manager
• Useful when running many containers

◦ Concept
• Daemon + REST API
• Accessible locally or over network
• Command line tools communicate this way



◦ Secure by design (unprivileged containers, resource restrictions
and much more)

◦ Scalable (from containers on your laptop to thousand of compute
nodes)

◦ Intuitive (simple, clear API and crisp command line experience)

◦ Image-based (with a wide variety of Linux distributions published
daily)

◦ Support for Cross-host container and image transfer (including live
migration with CRIU)



◦ Advanced resource control (CPU, memory, network I/O, block I/O,
disk usage and kernel resources)

◦ Device passthrough (USB, GPU, unix character and block devices,
NICs, disks and paths)

◦ Network management (bridge creation and configuration, cross-
host tunnels, ...)

◦ Storagemanagement (support formultiple storage backends, stor-
age pools and storage volumes)



Working with LXD

◦ Prerequisites:
• Initialized deamon (LXD)
• Rootfs and metadata
• Container image
• Container profile



LXD init

◦ Configuring the LXD daemon

lxd init



Prepare rootfs

1 mkdir -p ~/gentoo
2 cd ~/gentoo
3 mkdir gentoo-rootfs
4 cp ~/gentoo-rootfs.tar.gz gentoo-rootfs/

◦ In the same folder, create metadata for container
• Metadata describes basic information about the container



◦ Minimal metadata template file

vim metadata.yaml

1 architecture: "aarch64"
2 creation_date: 1554382805 # mandatory and must be valid.

Each container must have unique. Take this value: date +%s
3 properties:
4 architecture: "aarch64"
5 description: "Example of Gentoo virtual router"
6 os: "Gentoo Linux"
7 release: "0.1"
8 variant: "Custom"



Import rootfs and metadata as
image

◦ Compress both image and metadata

tar cf gentoo-matadata.tar metadata.yaml

◦ Import these two into the container image

lxc image import gentoo-metadata.tar.gz gentoo-rootfs.tar.gz --
alias GentooContainer

◦ Check if everything is ok

lxc image list



Prepare container profile

◦ Create YAML file to define the container profile

vim Gentoo-profile.yaml



1 config: {}
2 description: Gentoo LXD profile
3 devices:
4 eth0:
5 name: eth-wan
6 nictype: macvlan
7 parent: eth2
8 type: nic
9 eth1:

10 name: eth-lan
11 nictype: macvlan
12 parent: eth1
13 type: nic
14 root:
15 path: /
16 pool: lxd-pool
17 type: disk
18 name: default



Attach container profile

lxc profile create Gentoo-profile

lxc profile edit Gentoo-profile < Gentoo-profile.yaml

◦ To attach a profile to the container, first create the container from
the previously imported image

lxc init GentooContainer Gentoo

◦ Now attach the profile

lxc profile apply Gentoo Gentoo-profile



Verifying the process
◦ Checking images

lxc image list

◦ Checking containers

lxc ls

◦ Checking available profiles

lxc profile list

◦ Checking and modifying a specific profile

1 lxc profile show Gentoo-profile
2 lxc profile edit Gentoo-profile



Starting the container
lxc start Gentoo

◦ What now?
• Execute any command in the container
• Access shell (for attaching into the container)
lxc exec Gentoo –- /bin/bash

• From this shell we can do everything as regular Linux users
• Any other program can be run in the same way
lxc exec Gentoo – /bin/ping 8.8.8.8 -c2



Setting up router functionality
inside the container

◦ What is a router?
• Forwards data packets between computer networks
• One network is on LAN other is on WAN side – two different
data lines

• Basic NAT



Configuring the network
◦ Container profile defines 2 interfaces

1 eth0:
2 name: eth-wan
3 nictype: macvlan
4 parent: eth2
5 type: nic
6 eth1:
7 name: eth-lan
8 nictype: macvlan
9 parent: tap1

10 type: nic

◦ Checking if they exist in the container

ip link

◦ They exist but are not configured



◦ Who takes care of the network?
• systemd or more precisely systemd-networkd

◦ Each interface will require different behavior
• LAN should act as DHCP server
• WAN should act as DHCP client

◦ Configuring is done in /etc/systemd/network which is empty
by default



◦ Create two interface files used by systemd to handle interfaces

• 10-WAN.network

1 [Match]
2 Name=eth-wan
3
4 [Network]
5 DHCP=ipv4
6
7 [DHCP]
8 RouteMetric=10

• 11-LAN.network

1 [Match]
2 Name=eth-lan
3
4 [Network]
5 Address=192.168.2.1
6 DHCPServer=yes
7
8 [DHCPServer]
9 DNS=8.8.8.8

10 EmitDNS=yes

◦ Restart systemd-networkd

systemctl restart systemd-networkd

◦ Check that everything works with ip link



◦ Plug cable in eth2 and check that IP is offered on the eth-wan in
the container

◦ Plug cable in eth0 and other end into PC. Check if PC is offered an
IP from the board.

◦ Test
• From PC ping 192.168.2.1

• From container ping 192.168.2.X (PC)
• From container ping some external ip ( 8.8.8.8 )
• From PC ping some external ip ( 8.8.8.8 )



Configure NAT

◦ NAT – Network Adress Translation

◦ Configured with iptables
• Program used for configuring Linux kernel firewall
• Consists out of tables and chains
• Network packets flow from one table/chain to another
• Manipulating packet flowsallows setting different firewall rules
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◦ The idea is to forward packets from LAN to WAN and vice-versa

◦ First, allow the kernel to forward packets

echo 1 > /proc/sys/net/ipv4/ip_forward

◦ A basic setup requires 3 rules
• 1 in nat table, 2 in filter table

◦ These rules allow packets from internal network to be forwarded
to external (LAN→WAN)



iptables -t nat -A POSTROUTING -o eth-wan -j MASQUERADE

iptables -A FORWARD -i eth-wan o eth-lan -m state --state RELATED
,ESTABLISHED -j ACCEPT

iptables -A FORWARD -i eth-lan -o eth-wan -j ACCEPT

echo 1 > /proc/sys/net/ipv4/ip_forward

◦ Check that all is working by pinging an external IP from PC



Summary

◦ Run Gentoo on ARM board

◦ Create and run container

◦ Configure container as router

◦ Access external network through container from a machine in
local network

◦ Application of containers?
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