
Zagreb, NKOSL

Gentoo Linux on ARM
platforms
Davor Popović · Mak Krnic

May 18, 2019

About us

◦ Davor Popović, Mak Krnic

◦ Delivering solutions based on Linux, OpenWrt and Yocto
• Focused on software in network edge and CPEs

◦ Continuous (commercial) participation in Open Source projects

Gentoo Linux

About Gentoo Linux

◦ Source-based Linux distribution

◦ Almost nothing out of the box
• User-defined base system
• Manual kernel compilation

• genkernel tool
• portage/emerge package manager

Portage

◦ The heart of Gentoo

◦ The only package requiring dependencies

◦ Support for both binary and source-based packages

/etc/portage/*

◦ System-wide configuration

◦ make.conf

• CHOST , CBUILD , ACCEPT_KEYWORDS , USE , ROOT , MAKEOPTS
, PORTDIR

◦ repos.conf

• Source repositories configuration

Portage repositories and profiles

◦ Repositories
• Default repository at /usr/portage

• Custom repositories (local/git/...)
• Patched or unsupported packages
• Custom profiles

◦ Profiles
• By default located in /usr/portage/profiles

• In any of the repositories

Cross-compiling

◦ Process of creating binaries for use on different platform than the
one it is being compiled on

◦ cross-toolchain
• gcc
• binutils – ld, ar, objcopy, objdump, ...
• libc – glibc, uClibc, musl, ...

◦ crossdev - gentoo native cross-toolchain generator

◦ crosstool-ng – alternative cross-toolchain generator

◦ Other toolchains (Buildroot, openembedded)

◦ https://toolchains.bootlin.com/

https://toolchains.bootlin.com/

1 // hello.c
2 #include<stdio.h>
3
4 #ifdef __aarch64__
5 #define ARCHITECTURE "arm64"
6 #elif __amd64__
7 #define ARCHITECTURE "x86_64"
8 #else
9 #define ARCHITECTURE "unknown"

10 #endif
11
12 int main() {
13 printf("Hello, world, from " ARCHITECTURE "\n");
14
15 return 0;
16 }

1 gcc ./hello.c -o hello.x86_64
2 aarch64-unknown-linux-gnu-gcc ./hello.c -o hello.aarch64

1 hello.x86_64: ELF 64-bit LSB pie executable, x86-64, version 1 (
SYSV), dynamically linked, interpreter /lib64/ld-linux-x86
-64.so.2, for GNU/Linux 3.2.0, not stripped

2 file hello.aarch64
3 hello.aarch64: ELF 64-bit LSB pie executable, ARM aarch64,

version 1 (SYSV), dynamically linked, interpreter /lib/ld-
linux-aarch64.so.1, for GNU/Linux 3.7.0, not stripped

1 ./hello.x86_64
2 Hello, world, from x86_64
3
4 ./hello.aarch64
5 zsh: exec format error: ./hello.aarch64

crossdev

◦ Gentoo native cross toolchain generator

◦ Integration with system
• gcc, binutils, etc. managed by portage

◦ Automatically using build host’s portage configuration

cross-emerge

◦ Wrapper scripts for emerge

◦ Using host’s (cross) toolchain
• Producing binaries for the target architecture

◦ Usable with any toolchain

◦ Similar outcome as chroot

◦ Installs full OS structure to new root

◦ Suitable for creating rootfs

Installing the base file system

◦ cross-emerge [-av] @world

• Profile dependent
• Init system, shell, utils

◦ Edit /etc/shadow

• root:*:17140:0:::::

Cross-compiling issues

◦ Somepackages can’t be cross-compiled for all architectures or are
built incorrectly

◦ QEMU
• A generic and open source machine emulator and virtualizer

◦ Create almost complete rootfs and then finish building it in QEMU

◦ Downside: slow

Kernel

◦ Not built using (cross) emerge

◦ Obtaining the source manually from kernel.org

◦ Cross-compiling (env vars)
• ARCH, CROSS_COMPILE, INSTALL_MOD_PATH, INSTALL_PATH

◦ Device tree (.dts and .dtb)

Assembling it all

◦ Assumptions
• Rootfs (built with cross-emerge) at /opt/rootfs

• Kernel source at /opt/rootfs/usr/src/linux

• Target dir at /opt/stage4

◦ Copy base files
1 cd /opt/rootfs
2 rsync -ruta * --exclude 'usr/src/*' --exclude 'tmp/*' --

exclude 'usr/portage/*'
3 /opt/stage4/

◦ Copy the kernel and device tree
1 mkdir /opt/stage4/boot
2 cd usr/src/linux/
3 cp arch/arm64/boot/Image /opt/stage4/boot/Image
4 cp arch/arm64/boot/dts/marvell/armada-8040-mcbin-singleshot.

dtb /opt/gentoo/rootfs/boot/armada-8040-mcbin-singleshot
.dtb

Flashing the image

◦ SD card

cp -a /opt/stage4/* /mnt/sdcard

◦ Flash ROM

1 fallocate -l 128M ./rootfs.ext4
2 mkfs.ext4 ./rootfs.ext4
3 mount ./rootfs.ext4 /mnt/new-rootfs
4 cp -a /opt/stage4/* /mnt/new-rootfs/
5 umount /mnt/new-rootfs
6 dd if=./rootfs.ext4 /dev/sdX

Bootloader

◦ U-Boot
1 setenv bootargs 'console=ttyS0,115200 root=/dev/mmcblk1p1

init=/lib/systemd/systemd rw rootwait'
2 setenv bootcmd 'mmc dev 1; ext4load mmc 1:1 0x5000000 /boot/

Image;ext4load mmc 1:1 0x4f00000 /boot/armada-8040-mcbin
-singleshot.dtb; booti 0x5000000 – 0x4f00000'

3 saveenv
4 boot

First boot

◦ Login as root, without password

◦ Configure the system
• Root password
• Network
• Packages
• ...

Questions

Linux Containers (LXC/LXD)

Virtualization Concepts

Two virtualization concepts:

◦ Hardware (full/para) virtualization:
• Virtual machines - emulating complete hardware

◦ Operating system level virtualization:
• Containers - kernel feature for simultaneously running more
than one
user-space instance

Guest OS Guest OS

Hypervisor

Host OS

Hardware

Virtualization

Guest OS

Host OS

Hardware

Container Container Container

Containers

Applications rootfs

Applications

Binaries

Libraries

What is LXC?

◦ Operating system level virtualization on GNU/Linux

◦ In-between chroot and complete virtual machine

◦ Can be used without hardware support for virtualization on SoC
• Excellent for virtualization on embedded devices

◦ Easily configured as full featured file systemorminimized as single
app

LXC Features

◦ Namespaces
• Lightweight process virtualization
• A single or multiple processes have a different view on the
system

• Current support for: ipc , uts , mount , pid , network and
user

• In the past – support for running only privileged (root) contain-
ers

• User namespaces – allow running unprivileged containers

◦ Apparmor and SELinux Profiles
• Linux application security system
• Switching to defined profiles/contexts before a container ac-
tually starts

◦ Seccomp policies
• Allow filtering system calls

◦ Capabilities
• Setting upwhich capabilities to keep/drop before starting con-
tainers

◦ Cgroups
• Used for setting resource quotas (CPU, memory, I/O limits...)
• Used for setting character or block devices accessible from
container on the host

What is LXD?

◦ Container manager
• Useful when running many containers

◦ Concept
• Daemon + REST API
• Accessible locally or over network
• Command line tools communicate this way

◦ Secure by design (unprivileged containers, resource restrictions
and much more)

◦ Scalable (from containers on your laptop to thousand of compute
nodes)

◦ Intuitive (simple, clear API and crisp command line experience)

◦ Image-based (with a wide variety of Linux distributions published
daily)

◦ Support for Cross-host container and image transfer (including live
migration with CRIU)

◦ Advanced resource control (CPU, memory, network I/O, block I/O,
disk usage and kernel resources)

◦ Device passthrough (USB, GPU, unix character and block devices,
NICs, disks and paths)

◦ Network management (bridge creation and configuration, cross-
host tunnels, ...)

◦ Storagemanagement (support formultiple storage backends, stor-
age pools and storage volumes)

Working with LXD

◦ Prerequisites:
• Initialized deamon (LXD)
• Rootfs and metadata
• Container image
• Container profile

LXD init

◦ Configuring the LXD daemon

lxd init

Prepare rootfs

1 mkdir -p ~/gentoo
2 cd ~/gentoo
3 mkdir gentoo-rootfs
4 cp ~/gentoo-rootfs.tar.gz gentoo-rootfs/

◦ In the same folder, create metadata for container
• Metadata describes basic information about the container

◦ Minimal metadata template file

vim metadata.yaml

1 architecture: "aarch64"
2 creation_date: 1554382805 # mandatory and must be valid.

Each container must have unique. Take this value: date +%s
3 properties:
4 architecture: "aarch64"
5 description: "Example of Gentoo virtual router"
6 os: "Gentoo Linux"
7 release: "0.1"
8 variant: "Custom"

Import rootfs and metadata as
image

◦ Compress both image and metadata

tar cf gentoo-matadata.tar metadata.yaml

◦ Import these two into the container image

lxc image import gentoo-metadata.tar.gz gentoo-rootfs.tar.gz --
alias GentooContainer

◦ Check if everything is ok

lxc image list

Prepare container profile

◦ Create YAML file to define the container profile

vim Gentoo-profile.yaml

1 config: {}
2 description: Gentoo LXD profile
3 devices:
4 eth0:
5 name: eth-wan
6 nictype: macvlan
7 parent: eth2
8 type: nic
9 eth1:

10 name: eth-lan
11 nictype: macvlan
12 parent: eth1
13 type: nic
14 root:
15 path: /
16 pool: lxd-pool
17 type: disk
18 name: default

Attach container profile

lxc profile create Gentoo-profile

lxc profile edit Gentoo-profile < Gentoo-profile.yaml

◦ To attach a profile to the container, first create the container from
the previously imported image

lxc init GentooContainer Gentoo

◦ Now attach the profile

lxc profile apply Gentoo Gentoo-profile

Verifying the process
◦ Checking images

lxc image list

◦ Checking containers

lxc ls

◦ Checking available profiles

lxc profile list

◦ Checking and modifying a specific profile

1 lxc profile show Gentoo-profile
2 lxc profile edit Gentoo-profile

Starting the container
lxc start Gentoo

◦ What now?
• Execute any command in the container
• Access shell (for attaching into the container)
lxc exec Gentoo –- /bin/bash

• From this shell we can do everything as regular Linux users
• Any other program can be run in the same way
lxc exec Gentoo – /bin/ping 8.8.8.8 -c2

Setting up router functionality
inside the container

◦ What is a router?
• Forwards data packets between computer networks
• One network is on LAN other is on WAN side – two different
data lines

• Basic NAT

Configuring the network
◦ Container profile defines 2 interfaces

1 eth0:
2 name: eth-wan
3 nictype: macvlan
4 parent: eth2
5 type: nic
6 eth1:
7 name: eth-lan
8 nictype: macvlan
9 parent: tap1

10 type: nic

◦ Checking if they exist in the container

ip link

◦ They exist but are not configured

◦ Who takes care of the network?
• systemd or more precisely systemd-networkd

◦ Each interface will require different behavior
• LAN should act as DHCP server
• WAN should act as DHCP client

◦ Configuring is done in /etc/systemd/network which is empty
by default

◦ Create two interface files used by systemd to handle interfaces

• 10-WAN.network

1 [Match]
2 Name=eth-wan
3
4 [Network]
5 DHCP=ipv4
6
7 [DHCP]
8 RouteMetric=10

• 11-LAN.network

1 [Match]
2 Name=eth-lan
3
4 [Network]
5 Address=192.168.2.1
6 DHCPServer=yes
7
8 [DHCPServer]
9 DNS=8.8.8.8

10 EmitDNS=yes

◦ Restart systemd-networkd

systemctl restart systemd-networkd

◦ Check that everything works with ip link

◦ Plug cable in eth2 and check that IP is offered on the eth-wan in
the container

◦ Plug cable in eth0 and other end into PC. Check if PC is offered an
IP from the board.

◦ Test
• From PC ping 192.168.2.1

• From container ping 192.168.2.X (PC)
• From container ping some external ip (8.8.8.8)
• From PC ping some external ip (8.8.8.8)

Configure NAT

◦ NAT – Network Adress Translation

◦ Configured with iptables
• Program used for configuring Linux kernel firewall
• Consists out of tables and chains
• Network packets flow from one table/chain to another
• Manipulating packet flowsallows setting different firewall rules

Routing

Host
Inbound
Firewall

Host Outbound Firewall

raw table
OUTPUT chain

mangle table
OUTPUT chain

nat table
OUTPUT chain

filter table
OUTPUT chain

security table
OUTPUT chain

Packet from
Network Socket

Network Socket
(Host Application)

security table
INPUT chain

filter table
INPUT chain

mangle table
INPUT chain Yes NoIs this host the final

destination?

nat table
PREROUTING chain

mangle table
PREROUTING chain

raw table
PREROUTING chainInbound Packet

mangle table
FORWARD chain

filter table
FORWARD chain

security table
FORWARD chain

No YesIs this packet routable?

Send Packet to Data
Link Layer for

Outbound Interface

nat table
POSTROUTING chain

mangle table
POSTROUTING chain

Drop Packet

FIGURE 1 How iptables work

◦ The idea is to forward packets from LAN to WAN and vice-versa

◦ First, allow the kernel to forward packets

echo 1 > /proc/sys/net/ipv4/ip_forward

◦ A basic setup requires 3 rules
• 1 in nat table, 2 in filter table

◦ These rules allow packets from internal network to be forwarded
to external (LAN→WAN)

iptables -t nat -A POSTROUTING -o eth-wan -j MASQUERADE

iptables -A FORWARD -i eth-wan o eth-lan -m state --state RELATED
,ESTABLISHED -j ACCEPT

iptables -A FORWARD -i eth-lan -o eth-wan -j ACCEPT

echo 1 > /proc/sys/net/ipv4/ip_forward

◦ Check that all is working by pinging an external IP from PC

Summary

◦ Run Gentoo on ARM board

◦ Create and run container

◦ Configure container as router

◦ Access external network through container from a machine in
local network

◦ Application of containers?

Gentoo Linux on ARM
platforms
davor.popovic@sartura.hr · mak.krnic@sartura.hr

info@sartura.hr · www.sartura.hr

	GENTOO LINUX
	LINUX CONTAINERS (LXC/LXD)

