
Fast Path for Embedded Networking
Luka Perkov

February 27, 2019



Sartura

◦ Delivering solutions based on Linux, OpenWrt and Yocto
• Focused on software in network edge and CPEs

◦ Continuous participation in Open Source projects

◦ Gathering Linux enthusiasts and Open Source supporters



State of fast path networking

◦ The goal is to leverage the power of off-the-shelf networking hardware

◦ Insufficient performances of the generic Linux stack

◦ Emergence of kernel bypass technologies

◦ Recent in-kernel advancements significantly improve the Linux stack



Why is Linux networking slow?

◦ Allocation of internal buffer structures consumes bus cycles

◦ Generic use -> buffers contain metadata for a vast number of protocols

◦ This complexity slows down overall processing speed

◦ Userspace executing resource-costly system calls (context switching)

◦ Good for up to 1 Gbit/s workloads

◦ Bad for specialized workloads of modern network cards



sk_buff

   NIC

   RX Ring
RX

desc
#1

RX
desc
#2

RX
desc
#n

pkt 
buff 
#n

DMA
pkt 
buff 
#1 

pkt 
buff 
#2

new
packet sk_buff to network stack

sk_buff

NIC and kernel packet buffers



Kernel bypass

◦ Linux kernel performance issues lead to kernel bypass technologies

◦ Special pathways for direct communication betweenhardware anduserspace

◦ Main kernel bypass technologies:
• DPDK
• netmap
• Snabb



Kernel bypass - disadvantages

◦ Often limited to specific hardware

◦ Parallel and out-of-kernel networking stacks

◦ Kernel objects remain inaccessible

◦ Separate APIs, process of writing applications often difficult

◦ Security concerns



Fast path in harmony with the kernel

◦ Recent developments of in-kernel technologies: eBPF and XDP
• In-kernel team’s response to kernel bypass technologies

◦ Easily integrated, programmable

◦ Redefining performance and security of Linux kernel networking stack



extended Berkeley Packet Filter (eBPF)

◦ 11 64-bit registers, JIT compiler, tail calls, BPF verifier

◦ Strict memory access control

◦ Highly programmable -> proliferation of eBPF hooks for various purposes:
• Kernel debugging and performance analysis
• Attaching eBPF programs to sockets, tunnels, tc subsystem
• Attaching eBPF programs at earliest networking driver stage (XDP)



eBPF

BPF Bytecode

Verifier + JIT

  hooks  Native Code

BPF Bytecode

Kernel Functions

prog.bpf

BPF Program Reader

Bytecode

LLVM/Clang

bpf()
bpf()

User Space

Kernel Space

eBPF programs



eXpress DataPath (XDP)

◦ Generic framework for high-performance packet processing

◦ Integrated in the kernel, shares kernel’s security model

◦ Runs eBPF programs at the lowest level of networking stack

◦ Eliminates buffer and packet metadata allocation

◦ New functionality can be added on the fly and without kernel modifications



XDP Packet
Processor

Drop Receive Local Forward

RX CPU Other CPUs

Packet Steering
(RPS/RFS)

Parsing/Processing BPF Program

GRO

TCP/IP Stack

Sockets

TCP/IP Stack

Sockets

Control Application 
Load/Configure BPF 

Driver / Device

Application Application

XDP packet processing



XDP vs kernel bypass

◦ XDP augments and cofunctions with TCP/IP stack

◦ No dedicated CPUs with XDP

◦ Raw packets do not need to be re-injected into the kernel from 3rd party
userspace applications

◦ Userspace networking - no possibility to make security decisions once
packets leave the kernel

• In-kernel BPF code is much more restricted



AF_XDP

◦ New socket for getting packets into userspace

◦ Redirecting ingress frames to XDP-enabled network devices

◦ Enables redirecting frames to buffers in userspace applications (e.g. DPDK)

◦ Zero copy movement of packet data between userspace and kernel



XDP use cases

◦ DDoS protection (CloudFlare)

◦ DDoS scrubber

◦ Load balancer (Facebook, Cilium)



XDP driver support

Vendor Broadcom Cavium Intel Mellanox Netronome Qlogic Solarflare Others

Driver

bnxt thunderx ixgbe mlx4 nfp qede sfc veth

ixgbevf mlx5 virtio_net

i40e tun

TABLE 1 XDP drivers (as of kernel 4.18)



Sartura & XDP

◦ Extending and adapting eBPF and XDP to embedded networking

◦ Industry collaboration to support Marvell’s mvneta and mvpp drivers

◦ Packet drop rate tests
• Tests for packet drop rates achieved using iptables ruleset,
eBPF program and eBPF program compiled wit JIT compiler

• Tested on Marvell’s ESPRESSObin board (ARMADA 88F3700 SoC)
• 3 test runs on a constant of 1,379,231 pps sent



Test run iptables XDP XDP+JIT

1 184,037 527,483 1,041,677

2 183,155 526,852 1,041,160

3 183,573 527,301 1,040,545

Average 183,588 527,212 1,041,127

◦ XDP without JIT = 5x iptables drop rate

◦ XDP with JIT = 10x iptables drop rate
• Near theoretical 1Gbit link limit of 1.48 Mpps



Conclusion

◦ eBPF and eBPF subsystems are a powerful shift for Linux networking

◦ Use-specific optimizations

◦ Reusing existing kernel infrastructure

◦ XDP programs executed at earliest networking driver stage

◦ Vast performance improvements over standard Linux kernel stack

◦ Sartura actively involved in private and public fast path technology projects



Fast Path for Embedded Networking

luka.perkov@sartura.hr · www.sartura.hr


	About Sartura
	State of fast path networking
	Kernel bypass
	eBPF
	XDP
	Sartura & XDP

